trans-Cycloalkenes. Part 8. ${ }^{1}$ Bicyclic trans-Cyclo-octenes constrained in Chair and Twist Conformations

By Paul F. Newton and Gordon H. Whitham," The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY

Abstract

Bicyclic trans-cyclo-octenes locked in twist (1) and chair (2) forms and their unsaturated analogues (18) and (19) have been synthesised. Key steps are: the Diels-Alder addition of the epoxide (7) to butadiene to generate (6) directly, ring-opening of the bicyclic epoxides (6) and (12) to give diastereoisomeric pairs of β-hydroxyphosphine oxides, and stereospecific fragmentation of the latter to the bicyclic trans-cyclo-octenes.

The configurational and conformational relationships for trans-cyclo-octene can be summarised as in Scheme 1. Recent work ${ }^{2}$ indicates that the preferred conformation is the twist, that the barrier to conversion of (R)-twist to

(R)-chair [or of (S)-twist to (S)-chair] is relatively low (ca. $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and that the main barrier to racemisation ${ }^{3}$ of optically active trans-cyclo-octene is the conversion of (R)-twist to (S)-chair or of (S)-twist to (R) -

(1)

(2)
chair. We considered that further verification of these relationships might be obtained by the synthesis of bicyclic trans-cyclo-octenes possessing a trans-fused sixmembered ring attached to positions 5 and 6 across the

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
ring from the double bond. In such compounds the placement of the six-membered ring should not significantly distort the eight-membered ring by affeciing the partial conformation about $\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-6$, and $\mathrm{C}-7$, and conversion of (R)-twist to (R)-chair and of (S)-twist to (S)-chair should be prohibited. Thus, for example, olefin (1) would be a locked-twist trans-cyclo-octene and olefin (2) a locked-chair trans-cyclo-octene.

RESULTS AND DISCUSSION

There are two basic problems associated with the synthesis of compounds of type (1) and (2). These are (a) formation of the trans-fused bicyclo[6.4.0]dodecane skeleton and (b) introduction of the trans double bond. The first problem was readily solved using the known ability of trans-cyclo-octene to participate as a dienophile in Diels-Alder reactions, e.g. addition to butadiene to give the bicyclo[6.4.0]dodec-10-ene (3). ${ }^{4}$ Although the trans-ring junction of (3) had not been rigorously proved, verification was subsequently provided when the compound was obtained optically active (see following paper). The second problem required the placement of a cis double bond at position 4,5 so that further application of a suitable olefin inversion procedure might permit generation of the trans double bond there. A step forward in this direction was provided by the discovery that cis,trans-cyclo-octa-1,5-diene underwent addition to butadiene to give the bicyclic diene (4). ${ }^{5}$ However, it did not prove possible either to hydrogenate selectively the double bond in the six-membered ring or to epoxidise selectively the double bond in the eight-membered ring. ${ }^{5}$ An obvious way round the selectivity problem was via
the compound (5) formed by addition of 2 -ethoxybutadiene to cis,trans-cyclo-octadiene. In practice the hydrolysis of the enol-ether function in (5) and WolffKishner reduction of the derived ketone gave difficulties which made such a route tedious and unattractive. ${ }^{5}$ A significant improvement resulted from the realisation and demonstration that the bicyclic epoxide (6) could be obtained in one step by addition of the ' unnatural' epoxide (7) of cis,trans-cyclo-octa-1,5-diene to butadiene.

The mono-epoxide (7) was obtained most satisfactorily by application of the β-hydroxyphosphine oxide procedure ${ }^{6}$ to the diepoxide of cis,cis-cyclo-octadiene [(8), known to be the cis-isomer ${ }^{7}$]. Thus treatment of (8) with lithium diphenylphosphide followed by oxidation gave the hydroxyphosphine oxide (9) in 68% yield. Fragmentation of (9) using sodium hydride in dimethyl sulphoxide gave (7). The latter was characterised as the 1,3-diphenylisobenzofuran adduct (10); epoxidation of (7) gave the diepoxide (11) which showed eight carbon signals in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum, in agreement with the absence of a plane or axis of symmetry. Addition of butadiene to (7) gave (6) in 87% overall yield from the phosphine oxide (9).
mentation, but potassium t-butoxide in dimethyl sulphoxide gave the chair olefin (2), which was less stable than its isomer (1) and polymerised rapidly when neat. The spectıoscopic properties of (2) were different from those of (1) and the ${ }^{13} \mathrm{C}$ n.m.r. spectrum showed six carbon signals, again corroborating the C_{2} axis of symmetry. Iodine treatment also gave the cis isomer (15) thereby corroborating the skeletal identity of (1) and (2). Unfortunately conditions could not be found for separating the two olefins (1) and (2) on g.l.c.

In a similar manner the unsaturated bicyclic epoxide (6) was converted via the hydroxyphosphine oxides (16) and (17) into the corresponding twist (18) and chair olefins (19) (Scheme 3). These olefins were required in connection with the configurational assignments to be described in the next paper, but it transpired that there were several advantages in this series of compounds with the extra double bond in the six-membered ring. Thus the hydroxyphosphine oxides (16) and (17) were more readily separable by crystallisation than (13) and (14) and they showed greater difference in mobility on t.l.c. Also the olefins (18) and (19) could be separated by g.l.c. (AgBF_{4} containing column) and were more stable than

Scheme 2 (i) $\mathrm{H}_{2} / \mathrm{Pt}$; (ii) LiPPh_{2}; (iii) AcOH ; (iv) $\mathrm{H}_{2} \mathrm{O}_{2}$

For synthesis of bicyclic trans-cylo-octenes of type (1) and (2) it was considered that the β-hydroxyphosphine oxide route ${ }^{6}$ would probably be the most suitable since it should provide separable crystalline precursors of the two olefins. The bicyclic epoxide (6) was therefore hydrogenated and treated with lithium diphenylphosphide in the usual way (Scheme 2). Two diastereoisomeric β-hydroxyphosphine oxides (13) and (14) were obtained which could be separated by repeated fractional crystallisation. Given a syn-elimination in the subsequent olefin-forming step, (13) should be a precursor of the twist olefin (1) and (14) of the chair olefin (2). The hydroxyphosphine oxides (13) and (14) were very similar compounds, as expected, and no means of identification was apparent at this stage of the investigation. Subsequent work (see following paper) allowed this identification to be made, and the following discussion will presuppose these configurational assignments.

Treatment of (13) with sodium hydride in dimethylformamide gave the twist olefin (1) as an oil which polymerised on standing, but which could be kept for several weeks in solution in light petroleum at $0^{\circ} \mathrm{C}$. It showed signals due to six carbons in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum as expected for the C_{2} axis of symmetry and was rapidly isomerised to the corresponding cis-olefin (15) on treatment with iodine in ether.

The phosphine oxide (14) was more resistant to frag-
(1) and (2) although again one of the pair, (19), was less stable and polymerised at room temperature.

The two series of compounds were interrelated by hydrogenation of the more polar isomer (17) of the unsaturated hydroxyphosphine oxides to give the more polar isomer, (14), of the saturated pair.

(15)

Thus the initial aim of the investigation, the preparation of isolable chair and twist trans-cyclo-octenes, has been achieved. Clearly interconversion between the isomers by rotation of the double bond through the eightmembered ring is a fairly high-energy process. The following paper is concerned with the assignment of configuration to the compounds described in this paper. A third paper deals with some reactions of the chair and twist trans-cyclo-octenes in which a more accurate assessment of the energy barrier between them is obtained by direct interconversion.

It should be pointed out that the related pair of olefins (20) and (21) have been prepared by non-stereospecific
routes by Deyrup and Betkouski. ${ }^{8}$ In these compounds, however, the presence of the trans-fused cyclopropane ring provides an additional element of strain and distortion, and the authors were unable to study interconversion between them.
stirring for 30 min , acetic acid (22 ml) and hydrogen peroxide ($40 \mathrm{ml} ; 30 \%$) were added and the mixture extracted with methylene chloride ($3 \times 300 \mathrm{ml}$). Removal of the solvent and crystallisation from ethyl acetate-chloroform (4:1) gave (1SR,4RS,5RS,8RS)-5-diphenylphosphinyl-9-

The syntheses described in the present paper provide additional examples of the power of the stereospecific olefin synthesis based on β-hydroxyphosphine oxides. ${ }^{6}$

(20)

(21)

EXPERIMENTAL

${ }^{1}$ H N.m.r. spectra were recorded with Perkin-Elmer R32 or R14 instruments operating at 90 and 100 MHz respectively (SiMe_{4} as internal standard). Pulsed Fouriertransform ${ }^{13} \mathrm{C}$ n.m.r. spectra were recorded with a Bruker WH 90 operating at 22.63 MHz for solutions in CDCl_{3}. Chemical shifts are quoted in p.p.m. downfield of internal SiMe_{4}. Analytical g.l.c. used 20% 1,2,3-tris-(2-cyanoethoxy)propane containing $0.5 \% \quad \mathrm{AgBF}_{4}$ on Embacel (Column A), or 15% Carbowax 20 M on Diatomite C-AW (column B).
cis,cis-5,10-Dioxatricyclo[7.1.0.0 ${ }^{4,6}$, decane (8).-cis,cis-Cyclo-octa-1,5-diene ($108 \mathrm{~g}, 1 \mathrm{~mol}$) in methylene chloride $(400 \mathrm{ml})$ with sodium carbonate (120 g) was epoxidised with buffered peracetic acid ($45 \% ; 356 \mathrm{ml}, 2.1 \mathrm{~mol}$) in the usual way. The mixture was stirred at $15^{\circ} \mathrm{C}$ for 3 d , then worked up and distilled to give the diepoxide (8) ($93 \mathrm{~g}, 66 \%$), b.p. $69-70^{\circ} \mathrm{C}$ at 0.3 mmHg , which crystallised on standing, m.p. ca. $25{ }^{\circ} \mathrm{C}$ (lit., ${ }^{6}$ b.p. $65-72^{\circ} \mathrm{C}$ at 0.35 mmHg , m.p. $25-27$ ${ }^{\circ} \mathrm{C}$) ; ${ }^{13} \mathrm{C}$ n.m.r., $\delta 56.0(\mathrm{~d}, \mathrm{C}-1)$ and $22.0(\mathrm{t}, \mathrm{C}-2)$.
(1RS,4RS,5RS,8RS)-5-Diphenylphosphinyl-9-oxabicyclo-[6.1.0]nonan-4-ol (9).-Lithium diphenylphosphide ${ }^{9}$ (0.354 mol) in THF (200 ml) was added during 1 h to the diepoxide (8) ($38.1 \mathrm{~g}, 0.27 \mathrm{~mol}$) in THF (300 ml). After
oxabicyclo[6.1.0]nonan-4-ol (9) ($63.2 \mathrm{~g}, 68 \%$), m.p. 206--207 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.1; H, 6.9. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 70.2$; $\mathrm{H}, 6.8 \%$); $\nu_{\text {max }}$ (Nujol) $3450,1159,921,759,747$, and 700 $\mathrm{cm}^{-1} ; \tau 2.0-2.8(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.37(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}$, OH , exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.7(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.1(2 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$ and $8-\mathrm{H})$, and $7.2-9.0(8 \mathrm{H}, \mathrm{m})$.
(1RS,4RS,5RS,8SR)-9-Oxabicyclo[6.1.0]non-trans-4-ene
(7).-A solution of the hydroxyphosphine oxide (9) (1 g) in dry DMSO (25 ml) was added to sodium hydride $(0.3 \mathrm{~g})$ in the usual way. The mixture was stirred for 1 h then worked up and the solvent removed to give ($1 R S, 4 R S, 5 R S, 8 S R$)-9-oxabicyclo[6.1.0]non-trans-4-ene (7) ($0.29 \mathrm{~g}, 80 \%$) as a colourless unstable oil which was normally used immediately for further reaction; $v_{\text {max. }}$ (film) $3000,2850,1630,993,965$, and $747 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right)_{4.1}-5.0(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.1-$ $9.4(10 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 137.1$ and $132.2(\mathrm{~d}, \mathrm{C}-4$ and $\mathrm{C}-5), 54.9$ and 54.5 (d, C-1 and C-8), 38.8, 32.0, 30.2, 25.2 (t, C-2, C-3, C-6, C-7).
The 1,3 -diphenylisobenzofuran adduct (10) was prepared by adding l,3-diphenylisobenzofuran (0.62 g , 1 equiv.) to a solution of the olefin (7) $(0.29 \mathrm{~g})$ in dry benzene $(30 \mathrm{ml})$. The solution was set aside at $18{ }^{\circ} \mathrm{C}$ for 2 d . Evaporation of the solvent and crystallisation from benzene-light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) gave the adduct (10) ($0.6 \mathrm{~g}, 57 \%$) as pale yellow needles, m.p. $251-255{ }^{\circ} \mathrm{C}$ (Found: C, 85.3; H, 6.6. $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, 85.1; $\mathrm{H}, 6.7 \%$); $\mathrm{v}_{\text {max. }}$ (Nujol) 3060 , $3020,1603,1018,987,769$, and $710 \mathrm{~cm}^{-1}, \tau 2.1-3.1(14 \mathrm{H}$, m , aromatic), $7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{CHO})$, and $7.5-9.7(10 \mathrm{H}, \mathrm{m})$.
cis, trans-5,10-Dioxatricyclo[7.1.0.04, 6]decane (11).-The trans olefin (7) (0.7 g) in light petroleum (50 ml) over sodium carbonate (3 g) was epoxidised with buffered peracetic acid ($2 \mathrm{ml} ; 40 \%$) in the usual way. Work-up gave much polymeric material which was filtered off, and the organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and distilled to give cis, trans-5,10-dioxatricyclo[7.1.0.0 $\left.{ }^{4,6}\right]$ decane (11) (140 mg, 18%), b.p. $110^{\circ} \mathrm{C}$ (bath) at 0.1 mmHg , which solidified on
cooling to a waxy solid, m.p. $106-112{ }^{\circ} \mathrm{C}$ (Found: C, 68.7 ; $\mathrm{H}, 8.7 . \quad \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 8.6 \%$); $v_{\text {mar. }}$ (Nujol) $1279,1002,961,932,856$, and $754 \mathrm{~cm}^{-1}$; $\tau 6.8-9.0(\mathrm{~m})$; $\delta_{\mathrm{C}} 59.6,56.6,55.7$, and 55.3 (d, C-1, C-4, C-6, and C-9), 27.5, 27.2, 26.7, and 25.2 ($\mathrm{t}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-7$, and $\mathrm{C}-8$).
(1RS,4SR,6RS,9RS)-5-Oxatricyclo[7.4.0.0 $\left.0^{4,6}\right]$ tridec-11-ene (6).-The epoxy-olefin (7) [from the hydroxyphosphine oxide (9), 0.1 mol$]$ was mixed with an excess of buta-1, 3 -diene and sealed in a flask placed in a water-bath at $50{ }^{\circ} \mathrm{C}$ for 20 h . The excess of butadiene was allowed to evaporate and the residue was distilled to give (1RS,4SR,6RS,9RS)-5oxatricyclo [7.4.0.0 ${ }^{4,6}$] tridec-11-ene (6) ($15.5 \mathrm{~g}, 87 \%$ based on 0.1 mol), b.p. $67.5-68.5^{\circ} \mathrm{C}$ at 0.05 mmHg (Found: C, 81.0 ; $\mathrm{H}, \mathbf{1 0 . 2} . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{C}, \mathbf{8 0 . 8 5} ; \mathrm{H}, \mathbf{1 0 . 2} \%$); $v_{\text {mar. }}$ (film) $3030,1635,915$, and $780 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 4.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ $\mathrm{CH}), 7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{CHO})$, and $7.6-9.1(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 128.8$ and 128.4 ($\mathrm{d}, \mathrm{C}-11$ and $\mathrm{C}-12$), 56.4 and 55.4 ($\mathrm{d}, \mathrm{C}-4$ and $\mathrm{C}-6$), 39.2 and 37.3 (d, C-1 and C-9), and 32.7, 32.4, 27.8, and 24.7 ($\mathrm{t}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$, and $\mathrm{C}-13$).
(1RS,4SR,6RS,9RS)-5-Oxatricyclo[7.4.0.04, 6$]$ tridecane (12). -The unsaturated epoxide (6) (1 g) in ethyl acetate (20 ml) was hydrogenated at atmospheric pressure over platinum oxide (20 mg , Adams catalyst). Filtration, removal of the solvent, and distillation gave (1RS,4SR,6RS,9RS)-5oxatricyclo [7.4.0.0 $\left.{ }^{4,6}\right]$ tridecane (12) $(0.81 \mathrm{~g}, 80 \%)$, b.p. $74-75$ ${ }^{\circ} \mathrm{C}$ at 0.2 mmHg (Found: C, 79.8; H, 10.9. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 79.9 ; \mathrm{H}, 11.2 \%$) ; $\nu_{\text {max. }}$. (film) $1015,915,850$, and $754 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 7.0-7.4(2 \mathrm{H}, \mathrm{m}, \mathrm{CHO})$ and $7.6-9.3$ $(18 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 57.0$ and $56.4(\mathrm{~d}, \mathrm{C}-4$ and $\mathrm{C}-6), 41.3$ and 37.0 (d, C-1 and C-9), and 34.2, 33.2, 33.0, 29.9, 26.6, and $25.0(\mathrm{t}$, $8 \times \mathrm{CH}_{2}$).
Reaction of the Epoxide (12) with LiPPh_{2}.-Following the general procedure, $\mathrm{LiPPh}_{2}(0.07 \mathrm{~mol})$ in dry THF (100 ml) was added to the epoxide (12) ($9 \mathrm{~g}, 0.05 \mathrm{~mol}$) in THF (100 ml) and the solution stirred for 4 h , then worked up in the usual way with acetic acid (6 ml) and hydrogen peroxide (10 $\mathrm{ml} ; 30 \%)$. Removal of the solvent and crystallisation from ethyl acetate gave the mixture of diastereoisomers (13) and (14) ($13.9 \mathrm{~g}, 72 \%$). The mixture was separated by repeated fractional crystallisation from ethyl acetate to give (1RS,4RS,5RS,8RS)-5-diphenylphosphinylbicyclo[6.4.0]-
dodecan-4-ol (13) (ca. 5 g), m.p. $163.5-164{ }^{\circ} \mathrm{C}$ (Found: C, $75.2 ; \mathrm{H}, 8.15 ; ~ \mathrm{P}, 7.95 . \quad \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}$, $8.1 ; \mathrm{P}, 8.1 \%$) ; $\nu_{\text {max. }}$ (Nujol) $3400,3060,1175,753,722$, and $702 \mathrm{~cm}^{-1} ; \tau 2.0-2.7(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 4.7(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 7.0-7.5(1 \mathrm{H}$, m, CHP), and $7.8-9.3(18 \mathrm{H}, \mathrm{m}$,$) : and (1RS, 4 \mathrm{SR}, 5 \mathrm{SR}, 8 \mathrm{RS})$ -5-diphenylphosphinylbicyclo[6.4.0]dodecan-4-ol (66) (ca. 5 g), m.p. $214-215{ }^{\circ} \mathrm{C}$ (Found: C, 75.3 ; H, 8.3; P, 8.0%); $\nu_{\text {max. }}$ (Nujol) $3340,3050,1160,1100$, and $729 \mathrm{~cm}^{-1}$; τ $2.0-2.7(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 4.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 6.9-7.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CHP})$, and $7.9-9.3$ ($18 \mathrm{H}, \mathrm{m}$).
High dilution i.r. spectra $\left(\mathrm{CCl}_{4} ; 1.7 \times 10^{-4}-10 \times 10^{-4} \mathrm{~m}\right)$: (13) $3360 \mathrm{~cm}^{-1}$; (14) $3330 \mathrm{~cm}^{-1}$.

A sample of the mixture of diastereoisomers (13) and (14) (500 mg) was acetylated under the usual conditions (acetic anhydride--pyridine), and worked up after 43 h , extracting with methylene chloride to give the acetates ($500 \mathrm{mg}, \mathbf{9 0} \%$), which were recrystallised from ethyl acetate-light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$), m.p. $198-200^{\circ} \mathrm{C}$ (Found: C, 73.9 ; H, $7.9 ; \mathrm{P}, 7.5 . \quad \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.8 ; \mathrm{P}, 7.3 \%$), which could not be separated by t.l.c. [multiple elution in ethyl acetate-light petroleum ($1: 10$)]; $\nu_{\text {max. }}$ (Nujol) 3055 , $1725,1241,1175,1120$, and $726 \mathrm{~cm}^{-1}, \tau 2.0-2.7(10 \mathrm{H}, \mathrm{m}$,
$2 \times \mathrm{Ph}), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}), 7.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CHP}), 7.7-9.3$ $(18 \mathrm{H}, \mathrm{m})$, and $8.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.
(1RS,4SR,5SR,8RS)-Bicyclo[6.4.0]dodec-trans-4-ene (1).A solution of the hydroxyphosphine oxide (13) (300 mg) in dry DMF (15 ml) was added to sodium hydride (200 mg) in the usual way, and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Work-up, extraction with light petroleum ($3 \times 50 \mathrm{ml}$), and removal of the solvent gave ($1 R S, 4 S R, 5 S R, 8 R S$)-bicyclo-[6.4.0]dodec-trans-4-ene (1) ($\mathbf{1 2 0} \mathrm{mg}, \mathbf{9 0} \%$) as a colourless oil. G.l.c. (A) showed $<0.2 \%$ of the cis isomer (15) $v_{\text {max }}$ (film) $3000,1643,1462,1333,1210,990$, and $839 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 4.5-4.7(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.4-9.0(18 \mathrm{H}, \mathrm{m})$; m/e $164\left(33, M^{+}\right), 136(65), 135(36)$, and $121(95) ; \delta_{\mathrm{C}} 133.4$ (d, C-4), 41.8 (d, C-1), and 41.8, 35.6, 27.0, and 18.8 (t, C-2, $\mathrm{C}-3, \mathrm{C}-9$, and $\mathrm{C}-10$).

A solution of the trans olefin (1) (50 mg) in light petroleum $(10 \mathrm{ml})$ was extracted with aqueous silver nitrate solution ($10 \% ; 5 \times 3 \mathrm{ml}$), then concentrated aqueous ammonia was added to the extract which was re-extracted with light petroleum ($2 \times 10 \mathrm{ml}$). The organic extracts were washed with water (10 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. G.l.c. (A) showed that most of the trans olefin (1) remained in the original petroleum phase and that both the trans olefin (1) and the cis contaminant (15) had been extracted with about the same low efficiency.

To a solution of the trans olefin (1) (50 mg) in ether (5 ml) was added iodine (2 mg). After 5 min g.l.c. (A) showed no trans isomer (1) remaining; the solution was filtered through neutral alumina and the solvent was removed to give ($1 R S, 8 R S$)-bicyclo[6.4.0]dodec-cis-4-ene, identical by g.l.c. (A) and i.r. to an authentic sample of (15).
(1RS,4RS,5RS,8RS)-Bicyclo[6.4.0]dodec-trans-4-ene (2).A solution of the phosphine oxide (14) (400 mg) in dry DMSO $(20 \mathrm{ml})$ was added to potassium t -butoxide (220 ng) and the mixture stirred under nitrogen for 2 h . Water (30 ml) was added, the solution was extracted with light petroleum $(2 \times 30 \mathrm{ml})$, and the organic extracts were washed with water $(2 \times 30 \mathrm{ml})$. The combined petroleum extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed at reduced pressure to give the trans olefin (2) containing 4% of the cis isomer by g.l.c. (A). No starting material remained under these conditions. The olefin (2) showed $\nu_{\text {max }}$ (film) 3005 , $1645,1450,1222,982,879$, and $825 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 4.1-4.35$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.4-9.1(18 \mathrm{H}, \mathrm{m}) ; m / e 164\left(33, M^{+}\right)$, 136 (77), 135 (56), and 121 (100); $\delta_{\mathrm{C}} 137.2$ (d, C-4), 43.0 (d, $\mathrm{C}-1$), and $47.5,36.7,28.5$, and 25.4 (t, C-2, C-3, C-9, and $\mathrm{C}-10$). Alternated and co-injections of the two isomers (1) and (2) on several g.l.c. columns [(A), Carbowax, and support coated open tubular (50 ft) columns: Carbowax, silicone rubber gum SE 30, squalane, and diethylene glycol succinate] showed the isomer (1) to have a slightly longer retention time, but failed to separate the two.

The silver nitrate extraction described for (1) was repeated using a solution of the trans olefin (2) (40 mg) in light petroleum (10 ml). The extraction efficiency was again very low, but the process caused slight enrichment in the trans (2) relative to cis (15) ratio.

The iodine isomerisation described for (1) was repeated using a solution of (2) (30 mg) in ether (10 ml). G.l.c. (A) showed that rapid isomerisation occurred, and filtration through alumina and removal of the solvent gave an oil identified spectroscopically as the cis olefin (15).

Reaction of the Epoxide (6) with Lithium Diphenylphosphide. $-\mathrm{LiPPh}_{2}(0.12 \mathrm{~mol})$ in THF $(60 \mathrm{ml})$ was added to the epoxide (6) $(15 \mathrm{~g}, 0.084 \mathrm{~mol})$ in THF (200 ml) in the
usual way. After addition of acetic acid (9 ml) and hydrogen peroxide ($20 \mathrm{ml} ; 30 \%$), and stirring for 18 h , a precipitate was produced which was filtered off and dissolved in methylene chloride. This solution was washed with water $(2 \times 100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a solid $(6.44 \mathrm{~g})$ containing predominantly the isomer (17). The filtrate from above was diluted with water (500 ml) and extracted with methylene chloride ($3 \times 200 \mathrm{ml}$), the extracts being washed as above. Drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvent gave a solid (19.6 g , total yield 81%) containing the isomers (16) and (17) in a ca. $1: 1$ ratio by t.l.c. (ethyl acetate). The samples were fractionally crystallised from ethyl acetate to give (1RS,4SR,5SR,8RS)-5-diphenyl-phosphinylbicyclo[6.4.0]dodec-10-en-4-ol (16) (ca. 7.5 g), m.p. 193-194 ${ }^{\circ} \mathrm{C}$ (Found: C, 75.5; H, 7.6; P, 8.3. $\mathrm{C}_{24} \mathrm{H}_{29}{ }^{-}$ $\mathrm{O}_{2} \mathrm{P}$ requires C, 75.8; H, 7.7; P. 8.1\%) ; $\nu_{\text {max }}$ (Nujol) 3 340, $3040,3015,1435,1180,1111,750$, and $720 \mathrm{~cm}^{-1}$; $\tau 2.0$ $2.7(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 4.42(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.80(1 \mathrm{H}, \mathrm{s}$, OH , exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.9(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H})$, and $7.7-9.0(14 \mathrm{H}, \mathrm{m})$: and (1RS,4RS,5RS,8RS)-5-diphenylphosphinylbicyclo[6.4.0]dodec-10-en-4-ol (17) (ca. 7.5 g), m.p. 212-214 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.0; H, 7.8; P, 8.2\%); $\nu_{\text {max. }}$ (Nujol) $3350,3050,3010,1650$, $1305,1180,1156$, 1091,1029 , and $764 \mathrm{~cm}^{-1}$; $\tau 2.0-2.7(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$, $4.4\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}\right.$ and OH , exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.0(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, and $7.6-9.0(14 \mathrm{H}, \mathrm{m})$

Hydrogenation of β-Hydroxyphosphine Oxide (17).-The hydroxyphosphine oxide (17) (1 g) in methanol (60 ml) was hydrogenated over platinum oxide (100 mg , Adams catalyst) at atmospheric pressure. Filtration and concentration gave crystals ($0.84 \mathrm{~g}, \mathbf{8 3 . 5} \%$) identified as the isomer (14), by its i.r. and n.m.r. spectra.
(1RS,4RS,5RS,8RS)-Bicyclo[6.4.0]dodeca-trans-4-cis-10diene (18).-A solution of the β-hydroxyphosphine oxide (16) $(1 \mathrm{~g}, 2.63 \mathrm{mmol})$ in dry DMSO $(30 \mathrm{ml})$ was added to sodium hydride (200 mg) in the usual way. After 2 h the mixture was worked up to give ($1 R S, 4 R S, 5 R S, 8 R S$)-bicyclo[6.4.0]-dodeca-trans-4-cis-10-diene (18) ($\mathbf{3 5 0} \mathrm{mg}, 82 \%$) as an oil [containing $<0.1 \%$ of the cis,cis isomer (4) by g.l.c. (A)]; $v_{\text {max. }}$ (film) $3034,3000,1645,1632,1440,1182,989,870$, and $692 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ (cyclohexane) $193 \mathrm{~nm}(\varepsilon 11000)$; $\tau 4.13$ ($2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}$), $4.52(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H})$, and $7.5-9.0(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 133.8(\mathrm{~d}, \mathrm{C}-4), 129.4(\mathrm{~d}, \mathrm{C}-10), 42.5$ ($\mathrm{d}, \mathrm{C}-1$), and $42.3,35.3$, and 31.5 ($\mathrm{t}, \mathrm{C}-2, \mathrm{C}-3$, and $\mathrm{C}-9$).

A solution of the trans olefin (18) (50 mg) in ether (10 ml)
was treated with iodine (2 mg). After 30 min the solution was washed with aqueous sodium thiosulphate, then water, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and distilled to give the cis olefin (4) ($35 \mathrm{mg}, 70 \%$), identified with an authentic sample by g.l.c. (A) and i.r.
(1RS,4SR,5SR,-RS)-Bicyclo[6.4.0]dodeca-trans-4-cis-10-
diene (19).-A solution of the β-hydroxyphosphine oxide (17) ($500 \mathrm{mg}, 1.3 \mathrm{mmol}$) in dry DMSO (30 ml) was added to sodium hydride (200 mg) at $25{ }^{\circ} \mathrm{C}$ in the usual way, and worked-up after 30 min to give ($1 R S, 4 S R, 5 S R, 8 R S$)-bicyclo[6.4.0]dodeca-trans-4-cis-10-diene (19) as an unstable oil [contaminated with 3% of the trans isomer (18) and 6.5% of the cis isomer (4) by g.l.c. (A)], $v_{\text {max. }}$ (film) 3015 , $2900,2850,1647,990,848$, and $667 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ (cyclohexane) $191 \mathrm{~nm}(\varepsilon 12500) ; \tau\left(\mathrm{CCl}_{4}\right) 4.2-4.6(4 \mathrm{H}, \mathrm{m}$, olefinic), $7.4-9.0\left(14 \mathrm{H}, \mathrm{m}\right.$,); $\delta_{\mathrm{C}} 136.8(\mathrm{~d}, \mathrm{C}-4)$, $128.4(\mathrm{~d}$, $\mathrm{C}-10$), 39.3 (d, C-1), and $40.2,36.2$, and 28.9 (t. C-2. C-3, and $\mathrm{C}-9$).

A sample of the trans olefin (19) in ether was treated with iodine as for (18). Distillation gave ($1 R S, 8 R S$)-bicyclo-[6.4.0]dodeca-cis-4-cis-10-diene (4), identified by comparison of the i.r. spectrum with that of an authentic sample.

We thank the S.R.C. for a Research Studentship (to P. F. N.), Lady Richards and her associates for n.m.r. spectra, and Dr. E. J. Thomas for valuable exploratory synthetic work.
[8/1644 Received, 14th September, 1978]

REFERENCES

${ }^{1}$ Part 7, S. G. Davies. P. F. Newton, and G. H. Whitham, J.C.S. Perkin II, 1977, 1311.
${ }_{2}$ M. Traetteberg, Acta Chem. Scand., 1975, B29, 29; O. Ermer, Angew. Chem. Internat. Edn., 1974, 13, 604; Tetrahedron, 1975, 31, 1849.
${ }_{3}$ A. C. Cope and B. A. Pawson, J. Amer. Chem. Soc., 1965, 87, 3649.
${ }^{4}$ K. T. Burgoine, S. G. Davies, M. J. Peagram, and G. H. Whitham, J.C.S. Perkin I, 1975, 2629.
${ }_{5}$ E. J. Thomas, unpublished work.
${ }^{6}$ A. J. Bridges and G. H. Whitham, J.C.S. Chem. Comm., 1974, 142.

7 A. C. Cope, B. S. Fisher, W. Funke, J. M. McIntosh, and M. A. McKervey, J. Org. Chem., 1969, 34, 2231.
${ }^{8}$ J. A. Deyrup and M. F. Betkouski, J. Org. Chem., 1975, 40, 284.
${ }^{9}$ A. M. Aguiar, J. Beisler, and A. Mills, J. Org. Chem., 1962, 27, 1001.

